skip to main content


Search for: All records

Creators/Authors contains: "Evans Hutzenbiler, Brandon D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  2. Objectives Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos). Data description This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  3. Abstract Objectives

    Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos).

    Data description

    This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.

     
    more » « less